ParticlesGPU Library
Documentation

Natan Sinigaglia | dottore

Finally I found the time to think and write a proper document about my ParticlesGPU
library. In the first part I'll try to explain the main principles of this approach to
particles in GPU and after I'll go deeper in details on specific featured behaviours.

Credits to:
-Michael Mehling, who teached me many hisl indispensable functions (holy tex2Dlod) while we were at

Node0S.

-Viktor Vicsek, who let me discover GPU Sprites function.

-Tonfilm, for many usefull hisl transform functions taken from his ShaderTransform and for his Bicubic
resample shader.

Contents:
e Particle System using textures (pg.02)
* Reading Data Texture inside a Shader (pg.14)
e Mega Mesh (pg.17)

n]
FrameDelay

-0.3300
-0.3300
-0.3300
-0.3300
-0.3300
-0.3300
-0.3300
-0.3300
-0.3300
-0.3300
-0.3300
-0.3300
-0.3300
-0.3300
-0.2300
-0.3300

L

+

to X position

n u L] u u
.LinearSpread

Emnm
Transform

| |
Cluad

0.0010

Particle System

Rese:

n]
FrameDelay

-0.6730
-0.6377
-0.6557
-0.6820
-0.3823
-0.7132
-0.6336
-0.4653
-0.4416
-0.4912
-0.6756
-0.7183
-0.8829
-0.6742
-0.8952
—D.?B?I_

!

e

to X position

0.0004
0.0005
0.0005
0.0004
0.0010
0.0004
0.0005
0.0003
0.0009
0.0003
0.0004
0.0003
0.0000
0.0004
0.0000
IZI.IZIIZIIZIB_

!

Transform

| |
Cluad

| | u L] |
FRandomSpread

using textures

A particle system is a group of single objects (particles) that
actually do something. We could build a simple particle system in
vvvv by creating a spread of values (particle's position) that
increase by a step value added every frame.

As you see in this patch we can add the same value to all the
particle's position (from framedelay) and they will move all at the
same velocity. If we add different values to each particle, they will
move differently, depending on how big is the step value for each
one.

What is important to understand is that in both these cases, the
particle system works in a parallel way; it just apply the same
function (+) to a list of data. (The difference of the second
system is just in the values we put into the function +, the
structure itself remains the same)

So, a particle system is a parallel structured system.

If we would like to have 500.000 particles we should have a
spread of 500.000 slices and apply the function + to each slice,
witch is quite heavy to handle in cpu/patch. High spread count =
low performance.

But what is a spread? Just a container of data.

Thinking at others way to manage big data containers i realized a
stupid simple thing:

What is a texture? Just a container of data.
And then i thought: GPU is a piece of hardware that easily
manages high resolution textures! It can work with a lot of data

(pixel) in a parallel way! Just what we need for a particle system.

In the following page i'll show you the similitude between spreads
and textures as data containers.

Different ways to look at the same spread Using a spread of colors: We can store these colors in a texture instead a
sprea

- L n L _
LinearSpread
16 4

1 IH§V' | width] '["

—a

Reset |

— n '] n '] DynamicTexture Diynamic T exture
FrameDelay 1FramraDeleuy .I:ount X
| § L]
L]

—
]
]

=

ol -0.6210 16.0000 e ea
1l =Lzelly ol -06210/1] -0.6210(2] -0.6210/3] -0.6210 ““'mesca'e bgilier
2| -0.6210 l
El -0.6210 4l -0.6210/51 -0.6210(6] -0.621071 -0.6210 e T R
4| 0.6210
=l =Liesly 8 -0.6210(9) -0.6210/100 -0.6210(11] -D.6210
5l -0.6210
;: g:;:g 121 -0.6210{13] -0.6210/14 -0.6210[15] -0.6210 As a list of or arranged as a in a texture of orin a 4x4 pixel
o ' 16 colors Ax4 matrix 16 pixel Height texture
i"m gg;:g This is just another way to look at b 9
11 -0.6210 the same spread: instead of 16 rows R T T T
(] =tz we have 4 columns and 4 rows.
131 -0.6210
14| -0.6210 _
15| -0.6210| 0.0010 u-u-ulu-
OX p05|t|0n OX p05|t|0n
LlnealSpread LlnealSpread
L B B A L LI B B A
Transform Transh:\rm
Qua; - = Qua; - =

Here is clear that we can use texture in the same way as spread, filling them with data

.Lin;argpre;d |

e A common image texture contains
the informations to describe color

for each pixel; every pixel contains

Final Final R channel | |G channel B channel | (A channel RGE 4 channels (4 numbers)
Color Color
_ 1.0000 0.1875 0.0000 1.0000] -an 8bit number for Red
1 1.0000 0.5625 0.0000] 1.0000
2| 1.0000 0.9375 0.0000] 1.0000 N -an 8bit number for Green
3 0.6875 1.0000 0.0000 1.0000
4| 0.2125 1.0000 0.0000 1.0000)
5| 0.0000 1.0000 0.0625 1.0000 ¢ -an 8bit number for Blue
B 0.0000] 1.0000 0.4375 1.0000
7| 0.0000 1.0000 0.8125 1.0000 . -an 8bit number for a|pha
0.0000] 0.8125 1.0000 1.0000
0.0000 0.4375 1.0000 1.0000 8bit number = 128 possible
0.0000 0.0625 1.0000 1.0000 numbers (taken from O to 1’
0.2125 0.0000 1.0000 1.0000) .
0.6875 0.0000 1.0000 1.0000 worklng n rgb Space)'
1.0000 0.0000 0.9375 1.0000
1.0000 0.0000 0.5625 1.0000
1.0000 0.0000 0.1875 1.0000
[Red| (Blue

In a particle system we want to allow particles to move where they want, without limitations.

Let's try to use 8bit textures to store position of our particles. in a 2d particle system we would organize data as follow:

Red = x position

Green =y position

(we use just 2 channel of the pixels)

In this way, both x and y position will be values taken from those 128 number (in 0-1 space).This clearly is not enough for us; we need
moooore then just 128 values for x and y! we want to be abled to push particles far away, for example to position x=13964,657 and y=-

165,8465!

8bit describes a too small and too less definited space.

Fortunally, starting from shader model 2.0, directX supports float values rendering with 16bit and 32bit
depth. Now we have high detailed values in texture and we can use it to store any kind of data!

* A32B32G32R32F

L} L] L} n
.HandomSpread

<——-With this format we
can have 32bit float values
for each RGBA channel

L} L] L} n
.HandDmSpread

L} L] L} n L] |] L} n
.HandomSpread .HandomSpread

3.6615 | —24.8850 2.1585 31.2033
19103 39.3895 30611 | cizone |<———Infact these
1.0553 _2.6419 1.4185 3.4931
4.0878 5.0693 —2.0934 45.2414 ?alue are not only
3.0831 ~3.0779 37587 | -z0.8127, |in the 0-1 range.
1.6481 73784 2.1012 453715
0.8633| | -35.70%6 18438 | iazseo| |VW€ Can store any
3.6414 40.2327 _2.6953 -2z886| [float number
—2.7158 44 2457 21585 15.4261
—2.0280 39,5682 —3.3713 345253
4.8466 57526 3.2845 201372
4.2336| | -36.6474 0.0774 24.9175
—2.0886 3.9080 4.8110 | -31.7603
0.8757 5.7119 0.8352 35.9867
—46168| | -30.6698 —4.7227 25.5427
2.8956| | -29.1217 4.3005 28.1249
= [Green] Elue |
4 4
width| I

DgnamlcTexture

LULERIELETR] (transparency in

Gnd Un|F|:|rrn5c:aIe "

(alpha blend disabled
doesn't apply

rendering and leaves

.BlenE "
. RGEA channels

= Constant_2.0 FllterF"cuint

indipendent)

Here you can see just
colors in 0-1 range
because of the output
display limitation.
anyway the render is
in 32 bit and also the
texture coming out of
the DX9Texture.
J2float value are
correctly stored!

Some of the texture formats we might use in
a particle system:

-R16F (16 fit float values. This has only the
Red channel)

-G16R16F (both the Red and the Green
channels have 16 bit float data; usefull to
store Z2d position for example)

-A16B16G16R16F (all the RGBA channels are
in 32 bit float definition; with this format we
can store 4 data, for example 3d position +
time of birth)

and also their 32 bit float brothers:
-R32F

-G32R32F

-A32B32G32R32F

(wich have bouble value resolution)

W RIGF " GI&RIGF T AIGEIGCIGRIGF

I I

DyramicTexture

Dwramic T exture

DHnamicTexture

b R32F bl G32R32F ¥ A32BI2CIIRIIF

I I

DyramicTexture

Dwramic T exture

DHnamicTexture

To allow any shader to be rendered in 16 or 32 bit is necessary to compile the pixel shader with
Shader Model >= 2.0

Here the technique declaration inside the shader, where you choose shader model (it's at the end of
hisl code):

technique TConstant

{

pass PO

{

VertexShader = compile vs 1 1 VS();

PixelShader = compile ps 2 0 PS();

The texture format L Eess
selection pin is
. hidden by default. ——-dmsmsamas
remember to select the correct Texture format in all the look into the oLinamicText
Dynamic Texture nodes and also in all the DX9Texture, Inspektor of the node

otherwise the default format will be in 8 bit per channel to find it v GazRF

Same for DX9Texture: |——> “DaTenure "

Now that we have all the ingredients, let's try to build a basic Particle System using textures!

I'll do the same particle position cycle both in patch and in shader to show you that's really the same:

0.2960

0.3960

0.3960

0.3960

0.2960

0.2960

0.2960

0.2960/

0.2960

0.3960

0.3960

0.3960

0.2960

0.2960

0.2960

0.2960/

| n |
FrameDelay
B

0.0010

[
Reset]

Incremental value

Queue (EX9.Texture) is like framedelay just
for textures

they do the same thing: take the previous
frame value and add the Incremental Value

|Smred values are equal!

{In the render there's not
the "Show Grid" function
as in the color spread,
anyway there are 4x4

pixels)

In this shader cycle i need just
one value per particle (as in the
patched one), then i choosed
R32F format. Only the red
channel will be passed to the
next frame.

Grld

[
= Shader

UanDrmScale .

n |
FIe-:II:hannehlncrernent

4

rl

]

We use a grid 2x2 resolution as input mesh in the shader: we just want a quad all over the screen

UniformScale set to 2. In this way the grid will cover the entire render space from -1 to 1.

CiAT exture

Blend (EX9.RenderState Advanced): Alpha Blending pin set to 0. we don't want to evaluate trasparency in rendering.

Here is the hlsl code of the shader in the previous page

////// PARAMETERS:

//transforms
floatd4x4 tWVP: WORLDVIEWPROJECTION ;

//texture

texture Tex <string uiname="Texture";>;

sampler Samp = sampler state //sampler for doing

{

Texture = (Tex); //apply a texture to the sampler
MipFilter = none;

MinFilter = none;

//sampler states

MagFilter = none;

}s
bool Reset;
float Increment;

struct vs2ps

{

POSITION ;
TEXCOORDO ;

float4 Pos
floatd4d TexCd

////// VERTEXSHADERS

vs2ps VS (
float4 Pos
floatd TexCd

POSITION ,
TEXCOORDO)

//inititalize all fie
vs2ps Out = (vs2ps)O0;
//transform position
Out.Pos = mul (Pos, tWVP);
Out.TexCd = TexCd;

return Out;

the texture-lookup

//value to add every frame; passed from the patch

////// PIXELSHADERS:

float4 PS(vs2ps In): COLOR

{

//take the red from the last frame texture and add "

float newRed = tex2D (Samp, In.TexCd).r + Increment;
// when reset the cycle:

if (Reset) newRed = 0;

return float4 (newRed,0,0,0);

////// TECHNIQUES:

technique CycleRed

{

pass PO

{

VertexShader = compile vs 1 1 VS();
PixelShader = compile ps 2 0 PS();

}

[ncrement"

Let's do a more sofisticated particle system. This is
what we want:

3 float values for 3d dimensional position (XYZ)

Particle's birth time (to obtain particle's life time, usefull for
animations like alpha fade in and others...)

PP velocity (different xyz velocity for each particle; these values
will be added to the previous frame position, frame by frame)

PP Reset (Per Particle reset; we want to be able to reset each
particle individually)

Emitter xyz Position (where the particles will be emitted on reset
bang)

See in the next page how to do this in patch

[] LA u]
g You need to take 4 .GaussmnSpread
time each reset bang -0.0086) 0.0115 -0.0107
Selegt | PEC2USE yoU have to -0.0014| -0.0005| -0.0024
MR L L T —0.0061| -0.0106(0.0076 .
e e —0.0050/ -0.0202] -0.0054 Timing “—— we take
—1 aoioio)
-0.0180(-0.0075| O0.0044 I current Up Time
. HEERNE _0.0116 -D.0032 0.0067 16188.8293 |value and assign it
—1 aolololigo 0.0177| -0.0104| o.0011 Up Time to the 4th value of
— olololo -0.0114| -0.0025| 0.0156 resetted particles
JFrameDlelay 0.0104| 0.0009 0.0137
—1 aoioio
0.0063| 000137 0.0073
| giololo -0.0027| 0.0083] -0.0173
—/ Oig|oic SULIPE| =TLaTel| =1onie 0.0000 |=<-— here you set the emitter pasition,
-0.0105 0.0085 0.0058 4 0000 |where the particles will be resetted.
HEEN Wactar <-——-the 4th valus -0.0154) -0.0042] -0.0008 P
—1 a|ojo|o = (time of birth} 0.0046| -0.0103 -0.0147 e ——
remains the same -0.0124/ 0.0030| -0.0120) n)
[— a)ojajo Mal n Wector during all the :
- — gach particle
 I— Oo|o|io|o Pa rt I C I e 5 particle’s life Wector
| E— o|ojo|o C Cle + -- Add ®¥Y'Z Weloity to LastFrame XYE position m\l’ectm 1
—1 aoioio y] I_
ek
1 aoioio R 0.0000
— o|o[o[o W LR 4.0000
— SEEE = 5 2003
when this swith is activated by the 16188.8253
Reset Bang Resampled Reset Bang Switch reset spread, it takes reset values
instead cycled values

-2.8070 7.7584 -3.4945| 16182.1575
0.0000 4.0000 0.0000(16188.8253
-2.6103 -0.5171 3.2728| 16180.3450
-2.9619 -7.8748 -3.1971| 16177.6430
-6.4707 1.3122 1.5789| 161381.6586
-7.7239 1.5064 4.4736 16176.5325
12.1363 -3.1187 0.7413[16176.1778
0.0000 4.0000 0.0000(16188.8253
6.7071 4.6029 8.2147| 16176.8150
3.0464 10.6556/ 3.8127| 16179.4243
-1.1375 7.4606 -7.1968| 16180.5168
-4.0748 -3.0581 -0.0853| 16178.1116
-7.6076 5.9753 3.9123| 16175.9358
-6.1522 2.3052 -0.3278| 16180.7945
3.5807 -4.0086 -11.3767| 16174.7685
-5.0654 7.4001 -4.9270| 16181.3254
Il the particles informations
X Y Vi Birth
time

How to do the same in Shader?

XYZ position values for each particle:

We use RGB channels of a 32bit float texture to store X,Y,Z in
pixels. Every pixel is a particle >

Birth Time for each pixel-particle:

We give the UpTime value to the shader, so we'll assign it to
the A channel of resetted pixels/particles inside the pixel
shader.

XYZ velocity for every pixel-particle:

We feed our ParticlesCycle shader (that will manage the
texture cycle) with a velocity texture: we need 3 values for xyz
velocity and we need quite high value resolution to use also
small velocity values; for this reason we'll use an RGBA 16bit
float texture format (there isn't a float texture format with 3
channels, simply we won't use the A channel).

PP reset:

We feed the ParticlesCycle shader also with a bang texture:
each pixel of this texture will tell to the relative pixel of the
cycle when is resetted. For this texture we just need a boolean
value (0/1) so we can just use a simple format like 8A (just the
alpha channel in 8 bit depth).

Note: we could write the PPreset bang values in the A channel of the velocity
texture, optimizing and saving texture lookups in PixelShader. | decided to keep
separated for didactic reasons.

Control emission XYZ position:

We provide xyz emitter position to the shader in order to place
resetted particles where we want (we'll assign the resetted
position inside the pixel shader)

Texture RGBA channels

L~

L1
/

_—

LN O O O O N

AN N N N O O W O O =
LN N O O W W

R = X (X position value)
G =Y (Y position value)
B = Z (Z position value)
A = B (Particle's birth time)

4

4

X Resolution Y Resolution

4x4 pixels

Particle count = 16

v A8
1]

Select . this is just
to simulate
L
.Handom 16 random
b
® = ggssg |"9*
|
[o
o0 w0
[o
OnoO|m
PP reset bang
0.0000 .
- ! e T

DCiynamic Texsture

|

Reset
Texture

GPU
Shader
Cycle

[

Alpha Elending

We

channel for transparency

don’t want to use A

|

‘ [] "=
Blend .Gnd

|
= Shader_ParticlesCycle

¥ A32B32G32R32F

.

L= 3Texture

-

:UnifolmScaIe

-
Gueue

PP Reset Texture

L} l] L L]
.HandomSpread

L} n L L]
.HandomSpread

L} n L} L}
.HandomSpread

Remember! each slot of this grids corrispond to a pixel; each pixel is a particle!!l!

0.0042| -0.0027| -0.0048(0.0035| | -0.0040| -0.0035| -0.0037| -0.0049| | -0.0021| -0.0028) —0.0004| ~0.0017
0.0047| 0.0041| -0.0042| 0.0011| | 0.0033| -0.0023 -0.0007| -0.0039| | -0.0013| 0.0015| -0.0023| 0.0005
0.0041| -0.0017| -0.0007| 0.0048| | 0.0010| -0.0014| 0.0026| -0.0021| | -0.0021| 0.0012| -0.0047| -0.0018
0.0026(0.0021| 0.0019 0.0015| |-0.0020| -0.0040| 0.0001| -0.0021| | -0.0022) -0.0047 -0.0004| 0.0017
X Velocity ¥ Velocity

|Random velocity values for each xyz component of each particle |

¥ AlGEIGGIGRIGF

|
Clynamic Texture

Velocity
Texture

0.0042 -0.0040 -0.0021
= (Blue)
]

s B _m E_
| | |
|]] =
RGE
|

alpha

useless

o

purely didactic: it's just to show
wvou how XYZ velocity is passed

to RGB color of each pixel.

ITEHT%IIIIIIII

PP = Per Particle ("for each particle”)

2.0000

Previous Frame Data Texture

| -

FF XYZ Velocity Texture

14185.6521

This is the 32 bit float texture containing all

the final data we need:
Red channel

Green channel

Blue channel

Alpha channel

X particle position
Y particle position
Z particle position
particle birth time

<-——— we take
current Up Time
wvalue and assign it
to the A channel of
resetted particles

—

0.0000
0.0000

<--—- here you set the emitter position,
where the particles will be resetted.

0.0000

Emitter Position XYZ

Here is the hisl code of the ParticlesCycle Shader in the previous page

// PARAMETERS: // VERTEXSHADERS
//transforms vs2ps VS (
float4x4 tWVP: WORLDVIEWPROJECTION ; float4 Pos : POSITION ,
floatd4 TexCd : TEXCOORDO)
texture TexPrev <string uiname="Previous Frame Data Texture";>; {
sampler SampPrev = sampler state//sampler for doing the texture- vs2ps Out = (vs2ps)0;
looku !
2 Out.Pos = mul (Pos, tWVP); //transform position
{ Out.TexCd = TexCd;
Texture = (TexPrev); //apply a texture to the sampler return Out;
MipFilter = none; //sampler states }
MinFilter = none;
MagFilter = none; // PIXELSHADERS:
}; float4 PS(vs2ps In): COLOR
// ake the RGBA values from the last frame texture
texture TexReset <string uiname="PP Reset Texture";>; /g Eelss S I — e Ehe L ran BT
floatd4 lastFrame = tex2D (SampPrev, In.TexCd) ;
sampler SampReset = sampler state
- // get the reset bang info from the alpha channel of the Reset Texture
{ bool reset = tex2D (SampReset, In.TexCd).a > 0.5;
Texture = (TexReset); // get the XYZ velocity values from the RGB channels of Velocity Texture
MipFilter = none; float3 vel = tex2D (SampVel, In.TexCd).rgb;
MinFilter = none; // new RGBA data
MagFilter = none;
} float4 newData = 0;
’ ////]// GPU

if (reset) //set RGB to the reset position and A to the birth time

texture TexVel <string uiname="PP XYZ Velocity Texture";>; { newData = floatd (ResetPos, UpTime); }

sampler SampVel = sampler state else //get the old xyz and add xyz velocity;

{ { newData = float4 (lastFrame.rgb + vel, lastFrame.a); }
Texture = (TexVel); return newData;
MipFilter = none; }
MinFilter = none;
// TECHNIQUES:

MagFilter = none;
technique RGBA Cycle

[{

float UpTime;

float3 ResetPos <string uiname="Emitter Position";>; pass PO

struct vs2ps VertexShader = compile vs 1 1 VS();

{ PixelShader = compile ps 2 0 PS();
float4 Pos : POSITION ; }

float4 TexCd : TEXCOORDO ; }

Reading Data Texture inside a Shader

Well, just 5 min ago my laptop’s graphic card said goodbye while | was writing in OpenOffice (be
carefully, It really push the hardware over the limit). This mean from now on there will be less (none)
render screenshots and more wonderful drawings.

In the last 13 pages we saw how to use texture as dynamic containers for any kind of data. Now we'll
focus on how to use these texture.

In CPU particle system (pg.10) we would use particles data (stored in the spread) as following:

|
Main

Cycle

1
Particles| |
I
]

Switch

||.:a'ti:|e s life —]

Eirth
time

‘Wectar

[1E::-

1.8986
life time =
UpTime-BirthTime

take the spread containing all the data (XYZB)

divide it (With a vector4D spilit)

Use XYZ in a Transform node and provide it to any shader
Obtain the LifeTime (Current UpTime — BirthTime)

really easy so far....

Let's discuss in the next page how to retrieve data from a
texture and use it in our ParticlesGPU shaders

We want to use Data Texture for:
» Transform geometry (translate, scale,..) (like we usually do with transforms)
« Control shading parameters (example: using the birth time to influence the color)

To achieve this inside a shader we work respectively:
* In Vertex Shader to transform the geometry (VS works on vertices)

* In Pixel Shader to adjust the shading of geometry (PS works on pixels that cover the
rendered geometry = what you actually see)

Both in VS and PS we need to read data from the Data Texture of the shader cycle:

« First of all we need to declare the texture in the declaration part of the code (the
beginning); we also create a sampler that samples the texture (VS and PS will call this
sampler to read the texture).

texture TexData <string uiname="Data Texture";>;
sampler SampData = sampler state //sampler for doing the texture-lookup
{

Texture = (TexData) ;

MipFilter = none;

MinFilter = none;

MagFilter = none;

how to access DataTexture RGBA information inside VS and PS:

 |n Vertex Shader we use the function tex2plod (Sampler, TexCoord)

As we are in the vertex shader, we work with vertices; each vertex, using the
tex2D1lod function, will have access to the Data Texture and will be able to use those

values to transform itself. Example:

Pos.xyz += tex2Dlod (Samp, TexCd) .rgb;

this line of code simply tells: “take the current vertex XYZ position (in the object space)
and add to it the values stored in RGB channels of one particular point of this texture
(the point is indicated by vertex's TexCd)”

VS applies this operation to all the vertices coming from the mesh.

 |n Pixel Shader we use the common tex2D (Sampler, TexCoord) function. | said
common because this is the function always used to apply a texture onto a geometry.

In the next pages I'll explain how to prepare meshes in a clever
way to be controlled by values in the Data Texture.

Mega Mesh

What's inside a Mesh?

 Vertex Buffer: where all the information about each vertex of the mesh are
stored. directx documentation for a detailed information about vertexbuffers

« Indices: in directx the basic element (polygon) that compounds surface is a
triangle face. Indexbuffer defines which 3 vertices in the vertexbuffer make

up each triangle face of the mesh.

0.0000 0.0000 1.0:000
m Texture Coordinate 2 XYZW Jl BlendWeight 2
Mesh
I 0.0:000 H:0.11 5:0.9.. 1.0:000
m Diffuse Color BlendWeight 3

‘ertexBuffer z

] incice: 0
Texture Coordinate 0 XY Specular Color Elendindex 1
= spread of indices
Position xYZ 1.0000
3 Texture Coordinate 1 X¥Z ElendWeight 1

[
a .'l.l'ertexEIuFFer

Texture Coordinate 0 XY

If you look into VertexBuffer inspektor you will

WertenBufer i find many other available inputs that allow to
specify detailed information about vertices.
Mexzh ’ usually you would use just position, normal and

texture coordinates...

= [10Box (String) id 251|

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/directx9_c/directx/graphics/ProgrammingGuide/GettingStarted/Direct3DResources/VertexBuffers/vertexbuffers.asp

As you probably noticed, in ParticlesGPU examples there are dedicated modules
that generate a single huge mesh for all the particles. Let's explain why:

In a common CPU approach (like we saw at pg.14) we use particles data (spreads) to feed a
Transform node.

When a shader receive a spread (can be spread of transforms, colors, textures, ...any other input pin
of the shader), this happens EVERY FRAME:

» ltloads (“call’) the mesh from CPU memory (it's a slow operation).
» It applies VS to the mesh (using the first slice from inputs)
» It applies PS to those pixels interested by the surface (using the first slice from inputs)

Then it repeats these steps using the second slice value from input spread. And it goes this way throw
all the slices of the spread.

This means if we have 5000 objects (a spread of 5000 in the Transform node), the shader will
repeat the entire pipeline 5000 times each frame!

It will call 5000 times the mesh from CPU, every frame! This is a real bottleneck.

...that's why your pc start to cry and performances fall down using Transform with big spreads...
Clearly this approach is impracticable if we have in mind to render up to 1 million of objects. We need
to reduce the bottleneck.

The solution is to build a single big mesh containing all the particles that will be
rendered.

if we want 5000 quad particles, our Mega Mesh will contain 5000 overlapping quads written as a single
geometry.

The shader will render 5000 particles, calling the mesh just one time per frame. There's a massive
performance improvement...

In the next page I'll show you how to build this unique Mega Mesh.

Let's take as reference our particle system builded in pg.12

We want to build a mesh containing all the 16 particles evaluated in the Data Texture coming out of the

Shader Cycle. We decide each particle is a quad.

The Mega Mesh will contain:

XYZ vertices position of all the 16 quads (there will be 16 quads in the same position {0,0}).

» Texture Coordinates 0 to retrieve informations (xyz position, birth time) from the Data Texture.

« Texture Coordinates 1 to apply an image texture onto the quads (these texCoord are obviously
different from the previous one)

. Indices in order to build quads faces.

About Texture Coordinates 0:

All the 4 vertices of each quad need a TexCoord information that tells them wich pixel of
the Data Texture they will sample. All the 4 vertices will sample the same pixel
(otherwise they will move differently and the quad shape will deform) => they will have

the same TexCoord.

Vertex 0 Vertex 1 Vertex 4 Vertex 5
Particle 01 Particle 02
Vertex 2 Vertex 3 Vertex 6 Vertex 7

Vertex 2
Vertex 3

Vertex 7

Vertex 62
Vertex 63

Vertex 0
vertex] TexCd ={0,0}

Vertex 4
verlex >~ TexCd ={0.333,0}

.\./.ertex 60
Vertex 61 - TexCd ={1,1}

Data Texture from

Particle Cycle Shader

ad

Vertex 60

Vertex 61

Particle 16

Vertex 62

Vertex 63

UV coordinates for each pixel
(particle) of the Data Texture

0.333 | 0.666

0 0

0.333 | 0.666 |1
0.333 |0.333 [0.333

0 0.333 0.666 |1
0.666 | 0.666 | 0.666 |0.666
0.666
1

Look at next 2 pages to see the Mega Mesh Module

/

N

All the 16 Quads overlapping
in the same position

01 02 03 04

06 07 08
09/10 11 12
13 14 15 16

!

Each Particle corresponds to a
certain pixel in Data Texture

X Resolution Data Texture

(particle per row

count)
S
6
o i
Grid | <-—a simple quad mesh m
p—
Mesh
§

WertesEurter
mo

we'll use these TexCd to read the Data Texture wich

Vertex Position TexCoords O | |crunspuues ormsion i s vericesof TexCoords 1

each quad have the same Coords)

Texture Coordinates 1: we keep the
-0.5000| 0.5000) 0.0000 texCoords coming out of the original
0.5000 0.5000 0.0000 XYZ _pos from the 0.5000 l[| quad. we'll use these coords to place an
-0.5000| -0.5000) 00000 Grlgmal quad 1 1 image texture onto the particles.

1.0000 vBIol:k-
e 1

LinearSpread LinearSpread | We generate the TexCd we don't need to resample these Coords
oot | for all the particles because we already did for position and
Cross using a cross node here will be done automatically by the
12 |each quad has 12 slice of xyz vertex buffer.
m infor mation about the vertices
(4 vertices ™ 3 XYZ values) 0.0000| 0.2223] 0.6667 1.0000| | 0.0000 0.0000| 0.0000] 0.0000
0.0000 0.3223] 0.6667| 1.0000 | 0.3333] 0.3333| 0.2333 0.3332
we repeat the X¥Z 0.0000 0.3323] 0.5667| 1.0000 | 0.6667 0.6667| 0.6667| 0.6667
vertices information 0.0000| 0.2223] 0.6667| 1.0000] | 1.0000] 1.0000] 1.0000| 1.0000 0.0000 0.0000
1& times for all the " 1.0000| 0.0000
particles we have - g 0.0000| 1.0000
4 |Then resample these
.m- - texcoords 4 time (for
inal spread =i £5% o | all the 4 vertices of
= each particle)
I' Bepe Weshor
i
Fezample
wertex 00 H
O Particle 00
-0.5000]_0.5000] 0.0000) Quad 01 vertex 02
0.5000] 0.5000 D.Dﬂﬂﬂl vertex 03 0.0000 0.3333 0.6667 1.0000
-0.5000 -0.5000| 0.0000 vertex 04 i 0l 0.0000(1] 0.0000/2] 0.0000[3] 0.0000
0.5000] —0.5000] 0.0000 vertex 05 Particle 01 ' ' I I
-0.5000] 0.5000] 0.0000 vertex 06
0.5000] 0.5000 0.0000 Quad 02 vertex 07 -
—0.5000] —0.5000] 0.0000 peri 2 Particle 02 0.0000 0.3333 0.6667 1.0000/
_gég -géﬁ g-m vertex 10 4| 0.3333)5] 0.333361 0333371 0.3333
o000 osooo ooooe 2Uad 03 veries 11
- - - vertex 12 P rt | 03
-0.5000/ -0.5000] 0.0000 vartes 13 darticlie
0.5000] —0.5000] 0.0000 1L 0.0000 0.3333 0.6667 1.0000]
_ggﬁ g.gﬁ g.uﬂm vertex :g 8] 0.6667|3] 0.6667/10/ 0.6667|11] 0.6667
05000 0.5000 0000 wertex 1
—0.5000 -0.5000] 0.0000) vertex 17 Particle 04
0.5000] -0.5000] 0.0000 vertex 18
::Ez ég - 0.0000 0.3333 0.6667 1.0000]
veren 2t Particle 05| |iz1 1.00000121 1.0000/14 1.0000/15 1.0000
vertex 22 for each particle
wertex 23
XYZ Vertex
Pasitian of all
Quads (particles)

‘WertesEutfer

\

we'll use these TexCd to read the Data Texture wich

‘ontains particle's information (all the 4 vertices of Texcoo rd S] I n d i Ce S

rach quad have the same Coords) Quad mesh rappresentation
Texture Coordinates 1: we keep the =
texCoords coming out of the original 4 4 = |Ind|ces from Quad mesh |
quad. we'll use these coords to place an I = | to build the first face that compounds the
image texture anto the particles. m quad the GPU takes in order vertex 0, 1 and 2.
nearSpread | We generate the TexCd we don't need to resample these Coords We need to repeat this to build the second face GPU takes in order
fﬂf_ all the particles because we already did for position and canstruction scheme for | | |yertex 1, 3 and 2.
using a cross node here will be done automatically by the all the quads of the
vertex buffer. Mega Mesh.
Count
00| 0.0000| 0.0000
33| 0.3333) 0.3333
67|
00| 0.0000{_0.0000|

1.0000| 0.0000|
4 |Then resample these
__————_'__ .
[texcoords 4 time (for
Select -
all the 4 vertices of 1
each particle) Here we
——— “Rezample generate the o 1 2 3
offset spread 4| 5/ 6] 7
0l - to add to the a8 9[10/m
1] l| 2| |We can't just repeat L B IZIIEI 1215
- . original index -
1 E] 2| |these indices (like e 4 [yertex count
| 0.0000 0.3333 0.6667 1.0000 o 1| 2||we did for x¥z construction | e
1 0l 0.0000{1] 0.0000{2] 0.0000(3] 0.0000 1 3| 2 position): the scheme. In
o 1| 2 this way all
secand quad the quad will
— L : = (particle) wan't be a . =
0.0000 0.3333 0.6667 1.0000 o 1 2 TrrEEEs b uset_har _n| 4| 8|12 |vertex index offset
4/ 0.3333|5] 0.3333)6] 0.3333|7] 03333 L i 2 vertex 0.1 2 31 it relative 16| 20|24/ 28| |for each quad
- must uslevlrelrﬁces (A HI 36140 44
build faces 48[52[5660 .
4567. &
0.0000 0.3333 0.6667 1.0000 1
— |8 0666731 0.6667|10) 0.6667(11] 0.6667 Selent
* resample the
0.0000 0.3333 0.6667 1.0000 [offset & times
| : : : : o 1 2 1 o g 9 |for all & indices
5 12| 1.0000/13 1.0000/14/ 1.0000/15] 1.0000 1 3 2 Particle 00 o o Bl |or each quad
yr each particle & : & Pal"ticle 0] L 4 4
— 5 7 & 4 4 4
| &3 10 Particle 02 8 & 8
9 11| 19 3 8 8
120 13| 14 |Particle 03 12 12| 12
13 15 14 12l 12 1z
e Resampled offset

Couple of things on Mega Mesh:

* When you have thousands of particles, the spreads inside Mega Mesh Module will
have a huge amount of slices (up to millions!).

For this reason you need to optimize the module and switch all the slices off when
the mesh is builden (you build the mesh just one time, not every frame).

Use some S+H nodes just before the VertexBuffer inputs and remember to “Apply”
both VertexBuffer and Mesh nodes only when generating the mesh.

* When you find the correct settings for your mesh you can write it as an X File (Mesh
file with extension .x) using Writer (EX9. Geometry Xfile) node.

...(C1, G1, D2, Eb2, G1, D2, Eb2, G1, D2, Eb2)...

Pasition of all
Quads {particles)

—

‘WertexBuffer

—

lesh

E

G file w TEXT I:l

[o

Then you can use FileX (EX9. Geometry Load) node to load the mesh instead of
using the Mega Mesh Module.

The cool thing is the “Load In Background” pin. If Enabled you can upload huge
meshes without freeze the framerate. Quite amazing...

[]

i

| | u
AFile
L

....0K, from now on it's really problematic to work
without GPU... ehehehe

I'll post this first part of the Document so you can
start to look at it.

As soon as possible I'll continue...
Keep updated

Natan

1"It seems will be a loooong paper in the end... :)

	Pagina 1
	Pagina 2
	Pagina 3
	Pagina 4
	Pagina 5
	Pagina 6
	Pagina 7
	Pagina 8
	Pagina 9
	Pagina 10
	Pagina 11
	Pagina 12
	Pagina 13
	Pagina 14
	Pagina 15
	Pagina 16
	Pagina 17
	Pagina 18
	Pagina 19
	Pagina 20
	Pagina 21
	Pagina 22
	Pagina 23
	Pagina 24

